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a b s t r a c t

Jar-test is a well-known tool for chemical selection for physical–chemical wastewater treatment. Jar
test results show the treatment efficiency in terms of suspended matter and organic matter removal.
However, in spite of having all these results, coagulant selection is not an easy task because one coagulant
can remove efficiently the suspended solids but at the same time increase the conductivity. This makes
the final selection of coagulants very dependent on the relative importance assigned to each measured
parameter. In this paper, the use of Partial Order Scaling Analysis (POSA) and multi-criteria decision
analysis is proposed to help the selection of the coagulant and its concentration in a sequencing batch
ar test
anagement modeling
ulti-criteria decision

artial order analysis
reatment selection

reactor (SBR). Therefore, starting from the parameters fixed by the jar-test results, these techniques will
allow to weight these parameters, according to the judgments of wastewater experts, and to establish
priorities among coagulants. An evaluation of two commonly used coagulation/flocculation aids (Alum
and Ferric Chloride) was conducted and based on jar tests and POSA model, Ferric Chloride (100 ppm)
was the best choice. The results obtained show that POSA and multi-criteria techniques are useful tools
to select the optimal chemicals for the physical-technical treatment.
. Introduction

One of the most commonly used methods for the removal
f suspended solids in wastewater is the addition of coagu-
ant and flocculation aids, such as Alum, Ferric Chloride, and
ong chain polymers [1]. Coagulation, flocculation and clarifica-
ion, followed by filtration, are the key steps in conventional
astewater treatment systems. This is a well-proven technol-

gy for the significant removal of color and particulate matter
ncluding protozoa (e.g. Cryptosporidium oocysts and Giardia cysts),
iruses, bacteria, and other micro-organisms. Iron, manganese,
astes and odors may also be removed from the water by these
rocesses [2,3].

The treatment has several distinct stages: a coagulant is added

o neutralize the natural electrical charges on the colloidal parti-
les that prevent them from agglomerating, and is rapidly mixed
nto the water to be treated. The processed water will then enter a
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flocculation chamber and a gentle mixing during this stage allows
particles to agglomerate and form settleable flocs. Clarification usu-
ally follows the flocculation process and involves sedimentation or
settling, which allows the formed flocs to be separated for subse-
quent removal as sludge. Clarification is then followed by filtration
which provides a second, polishing step for particulates that were
not removed during the clarification step [4].

Nearly every water treatment plant uses Aluminum-based coag-
ulants [e.g. Aluminum-sulphate (Alum) or Poly-Aluminum Chloride
(PACl) or iron-based coagulants (Ferric Chloride or Ferric Sulphate)]
[5–13]. Alum has been used for several centuries in water treat-
ment and is probably the most well known and commonly used
coagulant. The chemical is prepared by the reaction of certain clays
with H2SO4 acid and delivered in granular or powder form. This
coagulant is acidic in nature and its storage and handling require
corrosion-proof tanks, pumps and pipes [7].

Ferric Chloride is highly acidic and the solution contains free
hydrochloric acid. The solution is highly corrosive to nearly all nor-
mally used metals including all grades of stainless steel and needs
to be stored, pumped and conveyed in synthetic corrosion-resistant
materials. The chemical is normally supplied as a solution of about

40% strength as FeCl3 with a specific gravity of about 1.4 and a pH
of less than 1.0 [8].

The best approach for determining the treatability of a water
source and determining the optimum parameters (most effective
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oagulant, required dose rates, pH, and flocculation times) is by
sing a jar tester [14].

It is always preferable to carry out tests on a number of samples
nd if possible, under different conditions to establish the most reli-
ble product. Having selected a suitable product, the use of routine
ar tests remains necessary for a number of reasons: (i) the nature
nd quality of the raw water may change, which may affect the
oagulant dose, (ii) it is necessary to check that the plant dosage
atches the demand established in the laboratory, and (iii) differ-

nt batches of coagulant may vary and the use of comparative jar
ests using some of the original product sample is a useful quality
heck. The normal procedure when conducting a jar test is; (i) ini-
ially to find the best performing coagulant and dose rate, and; (ii)
o determine the optimum pH for the chosen coagulant and dose
ate. Coagulation/flocculation performance is usually judged on the
asis of turbidity, color and organic constituent removal [15–18].

In this work, multi-criteria decision analysis is proposed as a
ool for helping in the design of the physical–chemical wastewater
reatment (jar test). Multi-criteria is a term that includes a set of
oncepts, methods and techniques that seek to help individuals or
roups to make decisions, which involve several points of view in
onflict and multiple stakeholders. All these concepts and methods
Factor Analysis, Principal Component Analysis, Correspondence
nalysis, Cluster Analysis, and Multidimensional Scaling) have
een largely studied in the operational research literature and are
ased on distance, coordination and absolute or nominal scaling
19,20].

Partial order analysis is based on hierarchy and product of chain
where a chain is defined as an ordered set in which any two ele-

ents are comparable with respect to the given order relation, like
he test scores). Partial order as a discipline of discrete mathemat-
cs appears to be a promising tool for decision-making particularly
n environmental issues [21]. It has been argued that partial order
heory may be the most objective way to rank a set of elements
22]. The objectivity lies in the fact that in contrast to other multi-
riteria methodologies, there is no need to unify the descriptors
sing weighting coefficients in any kind of functional relationships.
he partial order model implementation is discussed in Section
.1.2.

In partial order ranking, in contrast to standard multidimen-
ional statistical analysis, neither assumptions about linearity
or any assumptions about distribution properties are made.

n this way the partial order ranking can be considered as a
on-parametric method. Thus, there is no preference among the
escriptors. However, due to the simple mathematics outlined
bove, it is obvious that the method a priori is rather sensi-
ive to noise, since even minor fluctuations in the descriptor
alues may lead to non-comparability or reversed ordering. Con-
entional partial order ranking may appear insufficient to solve
roblems involving a high number of parameters as the number
f parameters may well appear to be prohibitive for developing
robust model [23]. A possible improvement is to apply weights
ithin a step-by step procedure or to use fuzzy partial order

oncepts [24].
The objective of this study was to define a simple procedure

seful in selecting the best coagulant and the relative dose for
he treatment of wastewater. The specific aim was to design and
ptimize coagulation/flocculation process for the treatment of
unicipal Solid Waste (MSW) in Hiria (Israel): (i) to investigate
first set of jar tests using different concentrations of Alum and

erric Chloride for wastewater treatment, (ii) to add economical
arameters in order to weight these parameters, according to the
udgments of wastewater experts, (iii) to maximize the removal of
rganic constituents, minimize coagulant dose & cost and optimize
he performance of a wastewater system which was equipped with
coagulation/flocculation process, and; (iv) to estimate the appli-
Materials 190 (2011) 51–59

cation of the Partial Order Scaling Analysis for decision making in
water and wastewater technology.

2. Materials and methods

2.1. Management modeling and Partial Order Scaling Analysis
(POSA)

2.1.1. General used models for coagulant selection
There is a tremendous need for research and models in the field

of wastewater treatment and a great deal of research is required
to accurately define the magnitude of adverse effects of the waste
generated from various plants that use coagulation technology
(especially clinical laboratories and multi-specialty hospitals) [25].
The limitations of using jar tests for determining optimum coag-
ulant doses can be overcome by using models. Concerning the
academic literature, there are few economic, statistical and mul-
tivariate models for optimal coagulant selection [13]. The technical
and the economic studies are based on: (i) the identification of
the profiles for various design and operating parameters, and; (ii)
computation of the total annual cost (for selected coagulant, capac-
ity and waste characteristics) for diverse pH at different coagulant
doses [26].

Concerning statistical models, there are two types for coagulant
selection: (i) simulation (linear and multifactor nonlinear), and; (ii)
process. Contrary to the multiple regression models, the general
linear model can analyze simultaneously more than one dependent
variable. The selection of the optimum coagulation conditions is
carried out by post hoc analysis using Duncan test. Pos hoc analysis
determines if a certain difference between removal efficiencies is
actually significant or not [27].

In conventional multifactor experiments, optimization is usu-
ally carried out by varying a single factor while keeping all other
factors fixed at a specific set of conditions. It is not only time-
consuming, but also usually incapable of reaching the true optimum
due to ignoring the interactions among variables. On the other
hand, the Response Surface Methodology (RSM) has been proposed
to determine the influences of individual factors and their inter-
active influences. The RSM is a statistical technique for designing
experiments, building models, evaluating the effects of several fac-
tors, and searching optimum conditions for desirable responses.
With RSM, the interactions of possible influencing parameters on
treatment efficiency can be evaluated with a limited number of
planned experiments [28–32].

When process models are used, the data include process inputs
(e.g. raw water quality parameters) and process control parameters
(e.g. coagulant dose, pH) and the outputs of the process that is being
modeled (e.g. treated water quality parameters) [33–36]. Although
the utilization of process and models overcomes the limitations of
using jar tests for determining the optimal Alum or Ferric Chloride
dose, the development of such models is not a trivial task. This is
because water treatment processes are governed by complicated,
nonlinear relationships [36].

2.1.2. Partial Order Scaling Analysis (POSA)
Multi-criteria analysis is a difficult task and typically involves

subjective mutual weight [37]. One possibility to overcome these
problems is to apply partial order ranking methodology [38–43].
Partial Order Analysis (POSA) is defined as the empirical determi-
nation of the dimensionality of partly ordered scalograms and is
based on elementary methods of discrete mathematics [44]. Meth-

ods related to partial order theory such as the Hasse Diagram
Technique (HDT) are increasingly used in the field of multi-criteria
decision support [45–48] and appear as an attractive and simple
tool to assess priorities [49–53]. Despite the well-known total rank-
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Fig. 1. Joint and lateral axes in POSA [57].

ng strategies, which are scalar methods combining the different
riteria values into a global index which always ranks elements in
n ordered sequence, the partial order ranking is a vector method-
logy which recognizes that not all the elements can be directly
ompared with all the others [54–56].

The following example demonstrates this perception. Consider
group of individuals with a vector of four tests: T1, T2, T3 and T4.
n individual receives a score of 1 in T1 if he fails test T1, and a
core 2 if he passes that test. Similarly, in each of the other tests: a
core of 1 is assigned to an individual for failure and 2 for success.
he outcome of administering the four tests to an individual is, of
ourse, a set of four scores (vector) which may be listed in the order
f the test-designation. For instance, an individual’s outcome may
e (1222) if he failed in test T1 and passed T2, T3 and T4, or (2121),

f he passed tests T1 and T3 but failed in tests T2 and T4.
Each profile describes a vector that performs better than another

f at least one variable is performed better than the other. Thus
2112) is higher than (1111). These two sources are considered
omparable. Two sources are not comparable if one variable of the
st source is higher and another variable of the 2nd source is higher.
hus (2121) and (2112) are not comparable.

In brief, partial order ranking is a simple principle, which a priori
ncludes “≤” as the only mathematical relation, adopts the princi-
les described above and represents the resulting variation among
rofiles as points in the geometric space shown in Fig. 1. Data
ecords with identical profiles are represented in the POSA space
y the same point as there is neither a quantitative nor a qualita-
ive basis for discriminating between them [57]. Profiles differing in
he degree of competitiveness are ordered according to their sum of
tructs as points along the joint axis from bottom-left (i.e., 1111) to
op-right (i.e., 2222). Profiles that involve the same degree of com-
etitiveness but differ in the type of behavior (non-comparable) are
epresented as points spread along the lateral axis that spans from
op-left to bottom-right (Fig. 1).

However, because non-comparable profiles can occupy one of
everal positions along the lateral axis while still preserving an
rder of increasing competitiveness, POSA arranges the configu-
ation so that the more structs two profiles have in common, the
loser their representative points appear in the solution space. For
xample, the profiles (2211), (2112), (1212) and (1122) would be
istributed along the lateral axis because they involve the same
egree of competitiveness (i.e., sum of structs equals 6) but dif-
erent types of behavior (i.e., patterns of scores across the structs).
n positioning these profiles, POSA would put (2211) and (1212)
n close proximity since they have a common score on the second

nd third struct, while (2211) and (1122) would be positioned at
pposite ends of the lateral axis because they have no structs in
ommon. Profiles (2211) and (1122) are considered to be more dis-
imilar in the type of occurring behavior than the profiles (2211)
Materials 190 (2011) 51–59 53

and (1212). The partial order creates a diagram for each variable in
which the profiles are represented by points in space. The higher
the score or category a profile receives on a specific variable, the
better its performance.

In general, POSA determines the placement of profiles along the
joint and lateral axes through a process in which profiles with the
same score on a struct (behavioral variable) are positioned closer
together in the solution space than profiles with different scores
on that struct. Specifically, each struct of a profile is considered
separately, and profiles with the same score on the struct being
examined are positioned into a contiguous region of the solution
space. Thus, for each struct, POSA attempts to position profiles in
such a way that drawing straight lines through the solution space
can separate profiles scoring a 1 or 2 on the relevant struct.

2.1.3. Partial Order Scaling Analysis (POSA): implementation
POSA compares individuals in terms of similarities of profiles

from particular variables and represents these similarities geomet-
rically as distances in space. It assumes some underlying order
to the variables selected and builds the geometric representation
around this order; such that the cases that score highest appear in
the top right hand corner of the plot and those cases which score
lowest on the variables appear towards the bottom left corner of
the plot. This procedure is fully described and illustrated [58,59] by
academic computer software [60–63]. Several POSA models are in
use for academic research (POSAC, HUDAP, and CoPlot). The weak
monotonicity coefficient, denoted by �AB is of special use by POSA
software [57]. The formula for weak monotonicity (�AB) between
two tests with ordered ranges, A and B is as follows:

�AB =
∑N

q=1

∑N
p=1(ap − aq)(bp − bq)∑n

q=11

∑n
p=1|ap − aq||bp − bq|

(1)

where ap and aq are (subject) p’s and (subject) q’s test scores respec-
tively in one test record, and bp and bq are p’s and q’s test scores
in the other test record. The weak monotonicity coefficient �AB
expresses the extent to which the information on one variable
increases in a particular direction as the information to the other
variable increases, without assuming that the increase is exactly
according to a straight line. It varies between −1.00 and +1.00. The
weak monotonicity �AB = +1.00 implies a perfect monotone trend
in a positive direction and �AB = −1.00 implies a perfect monotone
trend in a negative or descending direction [57].

The goodness-of-fit of the technique can also be assessed by
using the coefficient of alienation � and is embedded in CoPlot
software [64].

� =
√

1 − �2
AB (2)

CoPlot’s output is a visual display of its findings and it is based
on two graphs that are superimposed on each other [65]. The first
graph maps the n observations into a two-dimensional space. This
mapping, if it succeeds, conserves distance: observations that are
close to each other in n dimensions and are also close in two
dimensions, and vice versa. The second graph consists of n arrows,
representing the variables, and shows the direction of the gradient
along each one. Each variable vector is chosen from a least-square
regression so that the correlation between the actual values for the
variable (from the original Y matrix) and the distances from the
projections of each observation onto the vector is maximized (i.e.
CoPlot chooses the j th vector so that the correlation of the values of
variable j and the projections of each observation on the j th vector

is maximized).

The aim of POSA is to present the data in two dimensions, pre-
serving the partial order as well as possible in a mapping diagram
in order to define clusters. It is clear that for, empirical data, this
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Fig. 2. Partitioning options representing

rocedure introduces some error in the structured map. So, a coef-
cient which measures the goodness of fit must be defined. POSAC
ives such coefficient (CORREP):

ORREP = N∗
C − N∗

I
N∗

C + N∗
I

(3)

here N∗
C and N∗

I are the numbers of subject-pairs correctly
epresented, and, respectably, incorrectly represented by POSAC.
oncerning a specific test (or variable) each profile obtains 1 if he

ails the test and 2 if he passes that test. Hence, the Ratio of Sub-
ect Pairs Correctly Represented to the total number of subject pairs
RSPCR) is actually [57]:

SPCR = 1 + CORREP
2

(4)

RSPCR coefficient ranges between 0.00 and 1.00, with a score of
.00 indicating that all records with a particular struct score may be
artitioned into a region of the solution space without exception.

n general, a coefficient above 0.80 is regarded as indicating that
cores on a particular struct vary systematically across the partial
rder and that, as a result, the configuration of regions for that struct
s likely to be unique and meaningful [57].

Each of the structural variables is represented in an item plot
hich may be partitioned according to its presence (score = 2), or

bsence (score = 1). The item plots may be partitioned in such a way
hat the regions of space contain profiles with the same score on
hat item. Subsequently, there are six possible ways to partition
hese plots (Fig. 2): (i) the J-axis ranges from the bottom left hand
ide of the plot to the top right, (ii) the L-axis spreads the profiles
rom bottom right to the top left hand side of the plot, (iii) horizon-
al: partitions along the X axis, (iv) vertical: partitions along the Y
xis, (v) L-shaped, and; (vi) inverted L-shaped (Q type).

Of the six types of partitioning, two divide the solution space
n alignment with the X and Y axes. Behavioral variables operating
n this way are particularly interesting because they give the axes
hat they define the position of profiles (episodes) within the space

heir primary meaning. These behavioral variables are therefore
he two basic types of competitiveness that shape the differences
mong interaction episodes. A further two types of division align
hemselves with the diagonal axes, either forming regions along
uantitative structure of the profiles [57].

the competitive scale (J) or along the qualitative axis (L). Behavioral
variables dividing the space along the joint axis relate exclusively to
the degree of competitiveness in interactions, such that changes in
the occurrence of this behavior will be matched by corresponding
changes in the degree of competition [57].

Behaviors aligned with the lateral axis influence only the type
of competitiveness involved and so influence only the concern or
issue: that is the focus of interaction. Finally, a struct may also adopt
one of two secondary roles in partitioning the POSAC space, either
accentuating (Q) or attenuating (P) the possibilities to discriminate
between points that are high on X or Y. Behavioral variables that
accentuate the space increase the amount of qualitative variation in
episodes at higher points on the scale, while attenuating variables
increase the homogeneity of interactions such that profiles high
on X will also be high on Y. The interpretation of POSAC output is
further illustrated in the literature [66,67].

The above discussion suggests the importance of a preference
closeness measure with concern to preference similarity oriented
problems and incorporating decision-maker’s preferences in clus-
ter analysis. The basic idea is that all the objects inside the same
cluster are similar in the sense that they are preferred, indifferent
and incomparable to more or less the same objects (similar profiles)
[68,69].

There has been a limited attempt in the literature to use
POSA software for engineering design. In this paper, the proposed
methodology adopted POSA software HUDAP and CoPlot to solve a
decision design problem. The objective is to find the best coagula-
tion performance frontiers (min objective function) from a set of jar
test alternatives considering both quantitative and qualitative data.
The proposed methodology solves the decision design problem in
a hierarchical framework, as illustrated in Fig. 3.

2.2. Objective utility function for coagulation/flocculation process

Environmental engineering is concerned with the solid mate-
rial in a wide range of natural waters and wastewaters and the

source of pollution: domestic and industrial wastewater. All organic
compounds, except few, can be oxidized by the action of strong
oxidizing agents under acid conditions, regardless of the biological
assimilability of the substances. This test (COD) is a rapid & precise



E. Tzfati et al. / Journal of Hazardous

m
t
s
n
o

c
h
n
b
s
i
o
c

Z

s
c
m

T
V

Fig. 3. Proposed methodology.

ethod: oxidation by potassium dichromate in acid solution and
he excess dichromate is titrated with standard ferrous ammonium
ulphate using ferroin as an indicator [70]. COD is used for determi-
ation of aggregate organic matter and measures organic strength
f both domestic and industrial wastewater.

The comparative performance of coagulation/flocculation pro-
ess by the various alternative methods is very complex and is
ighly dependable on various site-specific operational and eco-
omic parameters. Working to solve this problem, a pilot plant can
e added in line to understand the origins of the effluent. In order to
upport adequate selection the decision-maker has to define a util-
ty function (ZT). The (objective) utility function is the minimization
f the total annual expenses and the minimization of the organic
onstituent in the treated wastewater.

T = Min{(chemical constituant added) + (chemical cost)

+ (chemical oxygen demand, COD)

+ (total fixed solids, TFS) + (total volatile solids, TVS)

+ (total suspended solids, TSS)} (5)
The objective function is subject to a series of specific site con-
traints and variables (Table 1): (i) treatment expenses (chemical
onstituent added. Alum is supplied as a solid and a special equip-
ent and operation is needed for Alum solution preparation), (ii)

able 1
ariables & cost data.

Variable Alum Ferric Chloride Remarks

Costa $/dry ton 253 472 Based on “Arrow E
Treatment expenses High Low Ferric Chloride is

50 kg/bag. Alum tr
expenses for Ferri

Chemical added & safety expenses Low Medium Ferric Chloride: en
and inhalation of
Keep containers c
Hydrogen Chlorid
With good ventila

COD – – Based on jar test
TFS – – Based on jar test
TVS – – Based on jar test
TSS – – Based on jar test

a Technical grade, based on database of purchase prices in 2009 delivered by “Arrow Ec
Materials 190 (2011) 51–59 55

coagulant cost, (iii) return for improved Chemical Oxygen Demand
(COD), (iv) return for improved Total Fixed Solids [TFS-residue that
remains after sample has been evaporated and dried at 103–105 ◦C
and later ignited at 500 ± 50 ◦C], (v) return for improved Total
Volatile Solids [TVS-solids that volatized and burned off after sam-
ple has been evaporated and dried at 103–105 ◦C and later ignited at
500 ± 50 ◦C], and; (vi) return for improved Total Suspended Solids
[TSS-portion of solids that retained on filter with specified pore size
(1.58 �m), measured after sample has been evaporated and dried
at 103–105 ◦C].

Chemical prices can be found at the internet (e.g. ICIS Chemical
Business). The posted prices do not necessarily represent level at
which transactions may have actually occurred, nor do they repre-
sent bid or asked price. The prices are intended as a guide and not
to be used as a basis for negotiations between producers and cus-
tomers. According to ICIS Chemical Business the coagulant prices
are: ALUM 331–425 $/ton (100 lb. bags, technical grade, 17% Al2O3)
and Ferric Chloride 300–351 $/ton (Tanks, technical grade, 100%
basis). In this research analysis the coagulants prices were based on
database of purchase price in 2009 delivered by “Arrow Ecology”:
Alum, 253 $/ton (dry) & Ferric Chloride 472 $/ton (dry).

Wastewater raw drainage (and dilution) treated by coagu-
lation/flocculation process is defined by the following chemical
characteristics based on Israel National Carrier feed: electri-
cal conductivity 1.0 dS/m, Na1+ 60–100 mg/l, Ca2+ 45–50 mg/l,
Mg2+ 20–25 mg/l, Cl−1 200–220 mg/l, SO4

−2 17–20 mg/l, HCO3
−1

250–300 mg/l [71].

2.3. Analytical methods

Samples were collected from the drainage of a sequencing batch
reactor (SBR) plant of the “Arrow Ecology” in Hiria (Israel) and the
tests were carried out on the same day. Coagulation and floccula-
tion studies were performed in a standard jar-test apparatus (Velp
Scientifica JLT6) comprised of six paddle rotors and equipped with 6
beakers of 1 l volume. JLT6 Flocculators has disconnectable lighted
back panel; microprocessor controlled timer with 2 different scales
of 0–999 min, 0–99 h or continuous; digital display of speed and
time remaining; stainless steel stirring rods adjustable in height by
a self locking chuck; individual speed selector for each stirrer via
DC gear motor.

Samples were diluted 1:50 with potable water and thoroughly
agitated (100 rpm) for re-suspension of settled solids before any
tests were conducted. Chemical reagents used as coagulants are
commercially available from “Arrow Ecology” company and include

Alum [Al2(SO4)3·18H2O] and Ferric Chloride (FeCl3).

The initial rapid mixing for all experiments was taken as 5 min
(100 rpm) and for slow mixing at 25 min (25 rpm). After settling
(duration 30 min), about 50 ml of supernatant was withdrawn using

cology” data and chemical market price in 2009
sold as solution in containers and Alum is sold as white flakes in Packing PP/PE
eatment systems provide Alum solution 10% (w/v). There are no treatment
c Chloride
sures ventilation, wear protective equipment to prevent skin and eye contact

vapors. Maintain eye wash fountain and quick-drench facilities in work area.
losed when not in use. Not flammable On burning will emit toxic fumes such as
e. Alum: where there is potential for skin contact, wear impermeable gloves.
tion, vapor concentrations will be below exposure limit

ology”.



56 E. Tzfati et al. / Journal of Hazardous Materials 190 (2011) 51–59

Table 2
Samples treated with Alum.

Sample Code Alum (ppm) Cent (m3-feeda) COD (ppm) TSS (ppm) TFS (ppm) TVS (ppm)

1 Blankb AL1 0 0 0 0 0 0
2 c AL100 100 2.5 116 820 412 408
3 c AL200 200 5.1 84 692 392 300
4 c AL350 350 8.9 136 880 160 720
5 c AL450 450 11.4 48 872 424 448
6 c AL550 550 13.9 36 848 412 436
7 Raw drainage AL7 0 0 21,400 29,816 14,140 15,676

a 253 $/ton (dry) technical grade, based on database of purchase prices in 2009 delivered by “Arrow Ecology”.
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he blank sample in is referred to potable water (supplied by the Israel National W
b pH blank = 7.0 ± 0.1.
c pH samples = 7.8 ± 0.1.

plastic syringe from the point located about 4 cm below liquid
evel for the determination of COD, TSS, TFS, and TVS (Analyses

ere made in triplicates).
Pure Alum is white and gives a water-white solution. However

he presence of iron as an impurity is common which gives the
hemical or the solution a yellow or even an orange color. The
astewater plant uses cheap Alum that was prepared from low-

rade clays and from waste acid. This leads to the presence of
ndesirable concentrations of heavy metals in the solution. Metals
re not a problem as it is a coagulant in its own right and tends to
ssist the coagulation process. Ferric Chloride is originally a waste
roduct from spent pickling solution and the wastewater plant uses
cheap product that was prepared from reacting scrap iron with
ydrochloric acid and supplied as a solution of about 40% strength
s FeCl3.

Coagulant quality control was performed by the measurement
f the specific gravity which is both rapid and simple using a
ydrometer. If this parameter was differs by more than (±5%) other
arameters such as the pH and the viscosity were checked.

Standards of good laboratory practice such as the maintenance
nd periodic assessment of equipment, instrumentation, consum-
ble supplies were practiced. Precautions were taken to ensure
hat (i) the workers were familiar with the dangers and treatment
ssociated with these coagulants, and (ii) there were minimum
nterferences caused by changes in raw water conditions.

Results and experimental observations were recorded in
ound notebooks and maintained electronic formats (spreadsheet,

nstrument record files). Quality assurance and quality control pro-
edures (analysis of method blanks, check samples) were adhered
o and records of these measures were kept.

. Results and discussion
.1. Jar test results

The characteristics of raw drainage and Alum coagula-
ion/flocculation are presented in Tables 2 and 3. In terms of COD

able 3
amples treated with Ferric Chloride.

Sample Code Ferric (ppm) Cent (m3-feed

1 Blankb FC1 0 0
2 c FC100 100 4.7
3 c FC200 200 9.4
4 c FC350 350 16.5
5 c FC450 450 21.2
6 c FC550 550 26.0
7 Raw drainage FC7 0 0

a 472 $/ton (dry) technical grade, based on database of purchase prices in 2009 deliver
he blank sample referred to potable water (supplied by the Israel National Water Carrie
b pH blank = 7.0 ± 0.1.
c pH samples = 6.5 ± 0.1.
arrier) that contains no organic constituents.

and TSS, there is a high concentration of organic matter. Equal vol-
umes (1000 ml) of measured sample were delivered into each of
the jars. Orion Model 420A was used for pH measurements and
reagent grade chemical solutions (hydrochloric acid and Sodium
hydroxide) were used for controlling the pH of samples.

As reported COD, TSS, TFS and TVS concentrations were spe-
cific to Alum test (Table 2) and Ferric Chloride test (Table 3), e.g.
the mean values of COD in the effluent varied from 55 mg/l (Fer-
ric Chloride treatment) to 84 mg/l (Alum treatment). COD removal
efficiency in both treatments was very high (Ferric Chloride, 99.7%
& Alum 99.6%). According to the test results the removal efficiency
was almost stable (more than 95%) regarding the organic variables
COD, TSS, TFS and TVS. Test result pointed out that coagulation
process can guarantee high rejection of organic constituents for
wastewater treatment plants.

3.2. Statistical analysis

In order to examine the behavior across all profiles of inter-
action, the data (Tables 2 and 3) were subjected to a Partial
Order Analysis {HUDAP software (MPOSAC)} [72,73]. The MPOSAC
algorithm provides a coefficient for the goodness of fit for the
representation of the partial order, named CORREP (Eq. (3)) and
specifies the proportion of structuple pairs correctly represented by
MPOSAC: (i) proportion of comparable pairs correctly represented
is 0.9697, (ii) proportion of profile-pairs correctly represented is
1.0000, and; (iii) proportion of incomparable pairs correctly repre-
sented is 0.9474.

Item diagram helps the user to detect partitioning of the space
into regions according to categories of the specific item. The parti-
tioning may have various directions: with X, Y, J, L, P or Q (Fig. 2). The
coefficient of weak monotonicity (Eq. (1)) between each observed
item and the partitions along the J, the X and the Y axis (Figs. 1 and 2)

is presented in Table 4. One can detect these directions in Table 4:
a high correlation indicates a common direction. So, item TFS goes
with Y (0.98), while COD goes with X (0.97). This means that the
partly ordered space is essentially spanned by these two variables.

a) COD (ppm) TSS (ppm) TFS (ppm) TVS (ppm)

0 0 0 0
20 564 116 448
40 960 388 572

120 944 268 676
44 1204 536 668
52 1096 268 828

21,400 29,816 14,140 15,676

ed by “Arrow Ecology”.
r) that contains no organic constituents.
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Fig. 4. Map, generated by

Table 4
Coefficient of weak monotonicity between each observed items and the partitions
along the J, the X and the Y axisa.

Item name J X Y

PPM 0.85 −0.07 0.65
Cent (m3) 0.85 0.22 0.37
COD 0.91 0.97 −0.44
TSS 0.92 0.51 0.25
TFS 0.91 −0.47 0.98

o
a
Y

s
F
d
C

C
s
c
T

4

a
a
i
b
w
u
t
p

w
d

TVS 0.52 0.70 −0.51

a High correlation (bold numbers) indicates a common direction.

The statistical analysis shows the power of POSA to organize
bjects simultaneously according to level of the sorted criteria and
s functions of the content meaning of the base coordinates X and
.

The COD and TFS variables (concerning Tables 2 and 3) were
tructured by the CoPlot software and the output is displayed in
ig. 4. The Coefficient of Alienation (Eq. (2)) equals 0.056. COD axis
egree is −44 and TFS axis degree is −130 (nearly orthogonal axis).
OD and TFS axis have the same Pearson correlation (0.99).

Overall, based on utility function and jar tests, HUDAP and
oPlot software, 100 ppm Ferric Chloride (Code FC100) is the best
ystem among all systems studied which shows the highest effi-
iency in terms of economic aspects and reduction of COD, TSS and
FS.

. Conclusions

The design of a cost effective wastewater treatment process to
chieve a desired good quality for irrigation can be very difficult,
s a large number of treatment options are available. This process
s further compounded by the many criteria that are needed to
e considered in the selection course of action. A utility function
as developed in order to test the performance of two commonly
sed coagulation–flocculation aids (Alum and Ferric Chloride) for
he treatment of the drainage of a sequencing batch reactor (SBR)

lant of the “Arrow Ecology” in Hiria (Israel).

In order to solve the utility function, an expert systems soft-
are based on partial order methodology were used. This study
emonstrates the possibilities and appropriateness of using POSA
the CoPlot software.

for selection of the optimal coagulant and provides a systemati-
cal decision making framework with several characteristics: (i) the
importance of different performances of treatment systems can be
evaluated using multiple criteria – both quantitative and qualita-
tive – rather than profitability alone, (ii) the use of ratings makes
it possible to evaluate the applicability of different alternatives for
the end user, (iii) the use of POSA method provides an effective way
of documenting the management process, and; (iv) the proposed
approach forms the basis for a continuous process of planning and
managing technology selection, so that the priorities of the treat-
ment processes can easily be modified and updated.

Overall, based on jar tests and POSA models, 100 ppm Ferric
Chloride is the best system among all systems studied which shows
the highest efficiency in terms of reduction of COD, TSS, TVS and
TFS. This study evidenced once again that coagulation process can
assure the limits of organics for municipal wastewater treatment
plants providing high removal efficiency using relatively low level
of Alum or Ferric Chloride if the process is well optimized and
operated.

The work presents the variability effects of process variables
and shows how POSA technique points out the importance of each
criterion. This characteristic is of direct scientific and engineering
concern and provides useful explanations for analysis of coagula-
tion/flocculation performance and selection.

It is highly recommended that plant trials be conducted when-
ever possible, since the jar test is not absolutely infallible and a
true assessment of the coagulant is only possible at plant scale.
Plant trials should be conducted for a minimum of three weeks and
preferably six weeks for each coagulant in order to obtain a true
reflection of the performance of each chemical. Periods shorter than
this may not be long enough to allow complete eradication of the
previously used coagulant from the floc blanket.

Once a coagulant has been selected, it is important to ensure that
the quality of the chemical remains constant between deliveries. Jar
tests can be used for this purpose, but simpler, more rapid tests can
be used to determine whether certain important parameters are
remaining consistent between deliveries. In the case of inorganic

coagulants such as Alum or Ferric Chloride, the measurement of
specific gravity can be carried out.

Another test that can be used on-site to monitor plant perfor-
mance is known as the Cascade test. This is similar to the jar test,
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xcept that the dosing of treatment chemicals takes place on the
lant. Samples are then collected of the dosed water prior to enter-

ng the clarifiers and flocculation and settling are simulated using
he jar test apparatus. These tests allows the plant operator a rapid

eans of assessing the impact of various changes in treatment
hemical type and dose on plant performance without waiting for
he full effects of a dosage change to pass through the works.
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